

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

PMR Spectrometric Analysis of Clofibrate

M. M. A. Hassan^a; Mohammed A. Loutfy^a

^a Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riyad University, Riyad, Saudi Arabia

To cite this Article Hassan, M. M. A. and Loutfy, Mohammed A.(1979) 'PMR Spectrometric Analysis of Clofibrate', Spectroscopy Letters, 12: 3, 177 — 185

To link to this Article: DOI: 10.1080/00387017908069144

URL: <http://dx.doi.org/10.1080/00387017908069144>

PLEASE SCROLL DOWN FOR ARTICLE

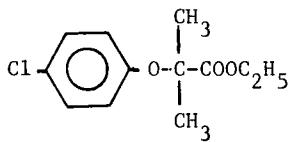
Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PMR SPECTROMETRIC ANALYSIS OF CLOFIBRATE

Key Words : NMR analysis, Clofibrate; Clofibrate, NMR analysis.


M.M.A. Hassan and Mohammed A. Loutfy
Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Riyad University,
Riyad - Saudi Arabia.

Abstract

A PMR analytical method is developed for the quantitation of Clofibrate (ethyl 2-(p-chlorophenoxy)-2-methylpropionate) as a drug entity and in capsule dosage form. Standard deviations of $\pm 1.07\%$ and $\pm 1.34\%$ were obtained for the pure drug and capsules, respectively. The results obtained comply with official standards required by different pharmacopeias. The PMR spectrum, in addition, provides a very specific mean for identification of Clofibrate. The procedure proved to be simple, rapid, accurate and precise.

Introduction

Clofibrate I (ethyl 2-(p-chlorophenoxy)-2-methylpropionate) is a well tolerated drug, widely and commonly used as anticholesterolemic agent (1,2).

I

Literature review of the methods pertaining to the determination of I is scarce. A gas-liquid chromatographic method (3) and a combined thin-layer chromatography and gas-liquid chromatography procedures (4) were reported. The method officially adopted by the United States Pharmacopeia (5) involves the application of ion-exchange resin followed by the concomitant determination of the absorbance of the standard and assay preparations in 1-cm cells of the wavelength of maximum absorbance at 226 nm. These assay procedures are lengthy and tedious. The present work extends the use of PMR spectroscopy for the quantitative determination of I as the pure drug and in its capsule dosage form. This is substantiated by virtue of the high unit dosage form of the drug (500 mg). Moreover, the PMR spectrum provides an identification of I.

Experimental

Apparatus and Chemicals - NMR spectrometer¹ was used. Standard clofibrate², commercial capsules³ I, internal standard malonic acid II,⁴ deuterated acetone⁵ (acetone-D₆), and acetone⁴ were used. All chemical shifts reported are in reference to tetramethylsilane at 0 ppm.

Preparation of I capsule sample solution

Weigh and mix thoroughly the contents of not less than 20 capsules. Weigh accurately a portion of the oil, equivalent to about 500 mg of I, into a glass stoppered tube. Add the specified amount of II, accurately weighed and 3 ml of acetone. Stopper the tube and shake thoroughly for about 2 minutes. Transfer about 0.4 ml of the sample solution to an analytical NMR tube. Place in an NMR spectrometer and obtain the spectrum, adjusting the spin rate to eliminate the spinning side-bands as much as possible. Integrate the peaks of interest (the four aromatic protons quartet of I centred at 7.03 ppm. and the CH₂ - singlet of II appearing

1. Varian T-60A 60MHz.
2. USP Clofibrate Reference Standard.
3. Atromid-S, ICI, - Imperial Chemical Industrial Ltd., Pharmaceutical Division, Macclesfield, Cheshire, England.
4. B.D.H. Chemicals, Poole, England.
5. Koch - Light Laboratories Ltd., Colnbrook Bucks, England.

at 3.36 ppm) at least three times and determine the average integrals. The amount of I may then be calculated as follows:

$$\text{mg of I} = \frac{A_x}{A_a} \times \frac{E.W._x}{E.W._a} \times \text{mg II}$$

Where :

A_x = integral value of the signal representing I.

A_a = integral value of the signal representing II.

$E.W._x$ = formula weight of I/4 = 60.68

$E.W._a$ = formula weight of II/2 = 52.03

Results and discussions

The PMR spectrum of I in deuterated acetone (Fig. 1) displays the following characteristic signals : $-\text{CH}_2\text{CH}_3$ triplet at 1.23 ppm, $-(\text{CH}_3)_2$ singlet at 1.57 ppm, $-\text{CH}_2\text{CH}_3$ quartet at 4.2 ppm, and the four aromatic protons quartet at 7.03 ppm. The four aromatic protons quartet centred at 7.03 ppm was chosen for quantitation of I, since it is widely separated from the signals of II as well as from that of the solvent. This peak is ideal for precise integration, thus allowing facile and accurate determination. Malonic acid II is employed as an internal standard, since it exhibits two protons methylene singlet at 3.36 ppm (Fig.2) which is widely separated from those of I. Moreover, the use of II as internal standard has been previously established (6).

Since I and II are freely soluble in acetone, it becomes the solvent of choice. Besides, its methyl protons singlet at 2.07 ppm

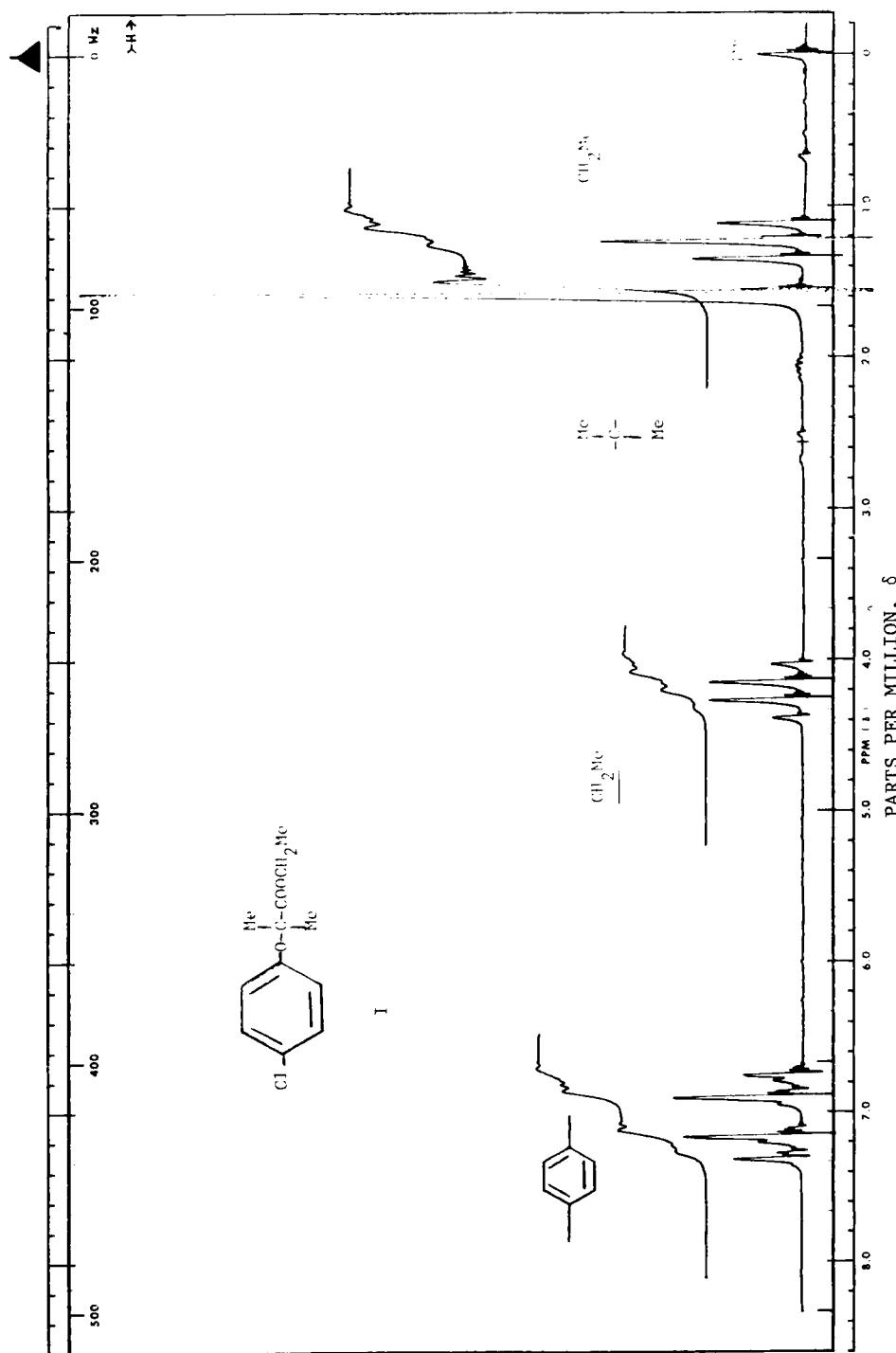


Figure I - NMR spectrum of clofibrate I and TMS, tetramethylsilane in deuterated acetone (acetone- D_6)

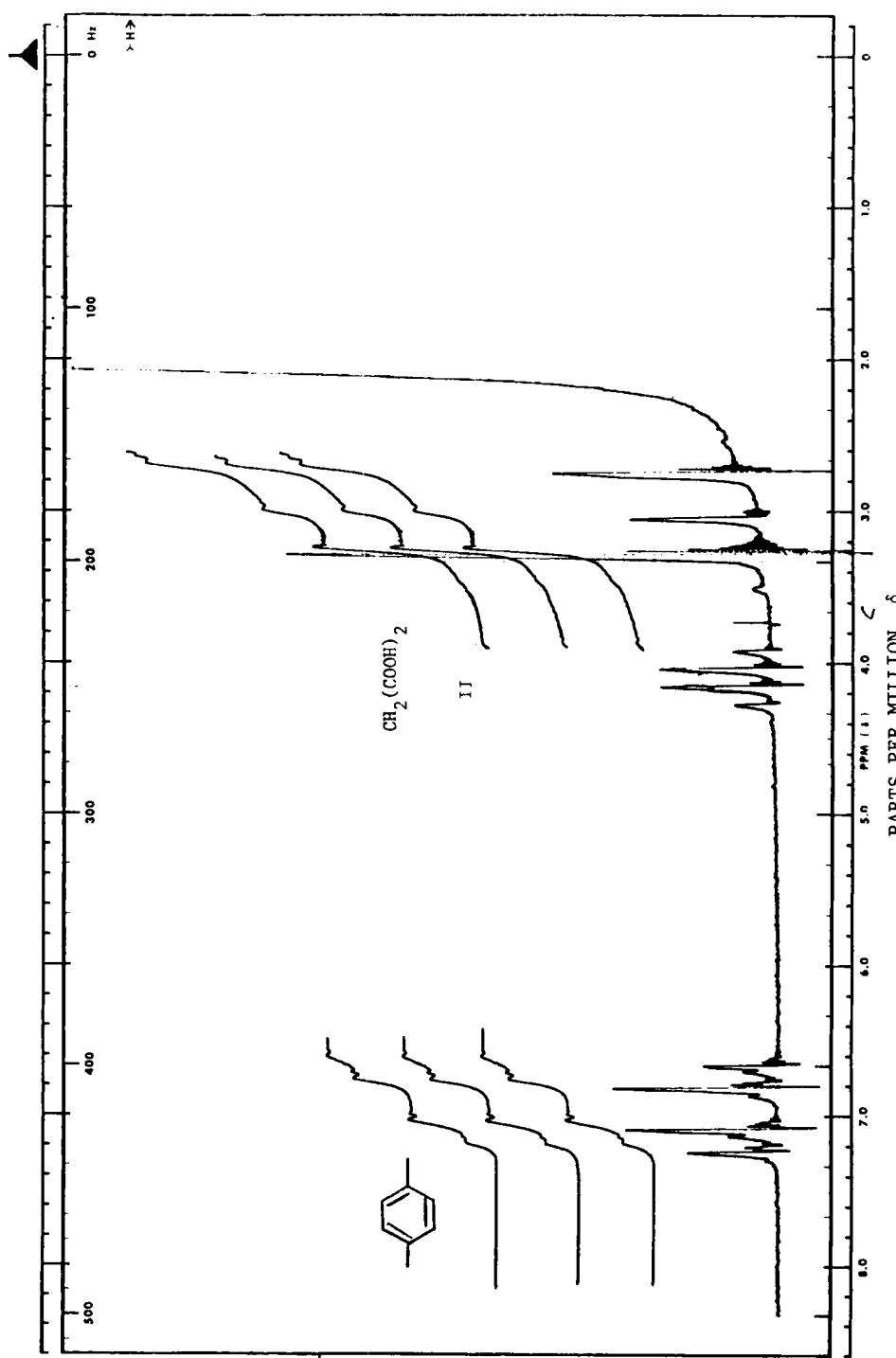


Figure 2 - PNR spectrum of clofibrate I, malonic acid II, and TMS, tetramethylsilane in acetone.

(Fig.2), does not interfere with the downfield protons of both I and II. Accordingly, the use of deuterated solvent is unnecessary.

A series of known standard I mixtures were prepared and assayed. It is evident from Table I that the method is both accurate and precise with an average of $99.70 \pm 1.07 \%$.

Table 1 - Determination of clofibrate in standard by PMR.

Standard Mixture	Internal Standard added, mg	Clofibrate		Recovery, % w/w
		Added, mg	Found, mg	
1	50	100	99.91	99.91
2	50	100	98.26	98.26
3	61	151	150.87	99.91
4	75	175	171.67	98.10
5	135	262	266.74	101.81
6	135	280	277.17	98.99
7	171	294	293.32	99.77
8	132	304	305.49	100.49
9	250	454	453.45	99.76
10	227	490	490.23	100.04
		Average	99.70	
		SD	\pm 1.07	

By applying the procedure to commercial capsules of I, the results are in good agreement with the declared dosages (Table II), with an average of $99.43 \pm 1.34\%$. Therefore, the method is superior to other reported methods, being simple, rapid, accurate and specific. Moreover, the simultaneous detection of impurities in the drug can be achieved.

Table II - Determination of clofibrate capsules by PMR.

Sample	Internal Standard Added, mg	Clofibrate		
		Declared per capsule	Found, mg per capsule	Recovery, % w/w
1	246	500	497.26	99.45
2	280	500	486.70	97.37
3	283	500	487.88	97.57
4	300	500	501.78	100.36
5	300	500	498.72	99.74
6	320	500	490.51	98.10
7	320	500	495.62	99.12
8	350	500	504.10	100.82
9	375	500	505.56	101.11
10	400	500	503.35	100.67
			Average	99.43
			SD	± 1.34

Acknowledgement:

Our thanks to Mr. Khalid N.K. Lodhi of the Central Laboratory, College of Pharmacy, Riyad University, Riyad, Saudi Arabia for running the NMR spectra.

REFERENCES

1. Remington's Pharmaceutical Sciences, 15th Ed., Mack Publishing Co., Easton, Pennsylvania, 1975, p. 796.
2. C.O. Wilson, et al., "Textbook of Organic Medicinal and Pharmaceutical Chemistry", 6th Ed., J.B. Lippincott Co., Toronto, 1971, p. 635.
3. Jaeger H., et al, Eur. J. Cl. IN. 6(4),333 (1976).
4. Sedaghat A., et al, J. Lipid Res., 15 (4), 352 (1974).
5. The United States Pharmacopeia, 19th Ed., Mack Publishing Co., Easton, Pa., 1975, p. 96.
6. Turczan, J.W., and Kram, C.T., J. Pharm. Sci., 56, No. 12, P. 1643 (1967).

Received 1-23-79

Accepted 2-06-79